A normalizing isospectral flow on complex Hessenberg matrices
نویسندگان
چکیده
منابع مشابه
Information Geometry of Positive Matrices and Isospectral Flow
A di erential-geometric structure of the manifold PD(n) of all the n n positive-de nite matrices is studied by means of informatin geometry. It is given by a pair of dual at a ne connections with an invariant Riemannian metric and a divergence function. Special attention is paid to the geometry induced in the isospectral submanifolds and the natural gradient ow induced in it. Its relation to th...
متن کاملInverses of regular Hessenberg matrices
A new proof of the general representation for the entries of the inverse of any unreduced Hessenberg matrix of finite order is found. Also this formulation is extended to the inverses of reduced Hessenberg matrices. Those entries are given with proper Hessenbergians from the original matrix. It justifies both the use of linear recurrences for such computations and some elementary properties of ...
متن کاملOn a Sturm Sequence of Polynomials for Unitary Hessenberg Matrices
Unitary matrices have a rich mathematicalstructure which is closely analogous to real symmetric matrices. For real symmetric matrices this structure can be exploited to develop very eecient numerical algorithms and for some of these algorithms unitary analogues are known. Here we present a unitary analogue of the bisection method for symmetric tridiagonal matrices. Recently Delsarte and Genin i...
متن کاملIsospectral flows on a class of finite-dimensional Jacobi matrices
We present a new matrix-valued isospectral ordinary differential equation that asymptotically block-diagonalizes n × n zero-diagonal Jacobi matrices employed as its initial condition. This o.d.e. features a right-hand side with a nested commutator of matrices, and structurally resembles the double-bracket o.d.e. studied by R.W. Brockett in 1991. We prove that its solutions converge asymptotical...
متن کاملOn The Generalized Fibonacci And Pell Sequences By Hessenberg Matrices
In this paper, we consider the generalized Fibonacci and Pell Sequences and then show the relationships between the generalized Fibonacci and Pell sequences, and the Hessenberg permanents and determinants. 1. Introduction The Fibonacci sequence, fFng ; is de ned by the recurrence relation, for n 1 Fn+1 = Fn + Fn 1 (1.1) where F0 = 0; F1 = 1: The Pell Sequence, fPng ; is de ned by the recurrence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2015
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2015.07.020